Complexity (Jan 2019)
Robust Stabilization of Discrete-Time Switched Periodic Systems with Time Delays
Abstract
This paper studies the problems of robust stability and robust stabilization for discrete-time switched periodic systems with time-varying delays and parameter uncertainty. We obtain the novel sufficient conditions to ensure the switched system is robustly asymptotically stable in terms of linear matrix inequalities. To obtain these conditions, we utilize a descriptor system method and introduce a switched Lyapunov-Krasovskii functional. The robust stability results are then extended to solve problems of robust stabilization via periodic state feedback. Novel sufficient conditions are established to ensure that the uncertain switched periodic system is robustly asymptotically stabilizable. Finally, we give two numerical examples to illustrate the effectiveness of our method.