Brain Sciences (Nov 2023)

Association of MRI Volume Parameters in Predicting Patient Outcome at Time of Initial Diagnosis of Glioblastoma

  • Kin Sing Lau,
  • Isidoro Ruisi,
  • Michael Back

DOI
https://doi.org/10.3390/brainsci13111579
Journal volume & issue
Vol. 13, no. 11
p. 1579

Abstract

Read online

Purpose: Patients with glioblastoma (GBM) may demonstrate varying patterns of infiltration and relapse. Improving the ability to predict these patterns may influence the management strategies at the time of initial diagnosis. This study aims to examine the impact of the ratio (T2/T1) of the non-enhancing volume in T2-weighted images (T2) to the enhancing volume in MRI T1-weighted gadolinium-enhanced images (T1gad) on patient outcome. Methods and Materials: A retrospective audit was performed from established prospective databases in patients managed consecutively with radiation therapy (RT) for GBM between 2016 and 2019. Patient, tumour and treatment-related factors were assessed in relation to outcome. Volumetric data from the initial diagnostic MRI were obtained via the manual segmentation of the T1gd and T2 abnormalities. A T2/T1 ratio was calculated from these volumes. The initial relapse site was assessed on MRI in relation to the site of the original T1gad volume and surgical cavity. The major endpoints were median relapse-free survival (RFS) from the date of diagnosis and site of initial relapse (defined as either local at the initial surgical site or any distance more than 20 mm from initial T1gad abnormality). The analysis was performed for association between known prognostic factors as well as the radiological factors using log-rank tests for subgroup comparisons, with correction for multiple comparisons. Results: One hundred and seventy-seven patients with GBM were managed consecutively with RT between 2016 and 2019 and were eligible for the analysis. The median age was 62 years. Seventy-four percent were managed under a 60Gy (Stupp) protocol, whilst 26% were on a 40Gy (Elderly) protocol. Major neuroanatomical subsites were Lateral Temporal (18%), Anterior Temporal (13%) and Medial Frontal (10%). Median volumes on T1gd and T2 were 20 cm3 (q1–3:8–43) and 37 cm3 (q1–3: 17–70), respectively. The median T2/T1 ratio was 2.1. For the whole cohort, the median OS was 16.0 months (95%CI:14.1–18.0). One hundred and forty-eight patients have relapsed with a median RFS of 11.4 months (95%CI:10.4–12.5). A component of distant relapse was evident in 43.9% of relapses, with 23.6% isolated relapse. Better ECOG performance Status (p = 0.007), greater extent of resection (p = 0.020), MGMT methylation (p p = 0.050) were associated with improved RFS. Although the continuous variable of initial T1gd volume (p = 0.39) and T2 volume (p = 0.23) were not associated with RFS, the lowest T2/T1 quartile (reflecting a relatively lower T2 volume compared to T1gd volume) was significantly associated with improved RFS (p = 0.016) compared with the highest quartile. The lowest T2/T1 ratio quartile was also associated with a lower risk of distant relapse (p = 0.031). Conclusion: In patients diagnosed with GBM, the volumetric parameters of the diagnostic MRI with a ratio of T2 and T1gad abnormality may assist in the prediction of relapse-free survival and patterns of relapse. A further understanding of these relationships has the potential to impact the design of future radiation therapy target volume delineation protocols.

Keywords