Cell Reports (Jun 2024)

Insights from multi-omic modeling of neurodegeneration in xeroderma pigmentosum using an induced pluripotent stem cell system

  • Cherif Badja,
  • Sophie Momen,
  • Gene Ching Chiek Koh,
  • Soraya Boushaki,
  • Theodoros I. Roumeliotis,
  • Zuza Kozik,
  • Ian Jones,
  • Vicky Bousgouni,
  • João M.L. Dias,
  • Marios G. Krokidis,
  • Jamie Young,
  • Hongwei Chen,
  • Ming Yang,
  • France Docquier,
  • Yasin Memari,
  • Lorea Valcarcel-Zimenez,
  • Komal Gupta,
  • Li Ren Kong,
  • Heather Fawcett,
  • Florian Robert,
  • Salome Zhao,
  • Andrea Degasperi,
  • Yogesh Kumar,
  • Helen Davies,
  • Rebecca Harris,
  • Christian Frezza,
  • Chryssostomos Chatgilialoglu,
  • Robert Sarkany,
  • Alan Lehmann,
  • Chris Bakal,
  • Jyoti Choudhary,
  • Hiva Fassihi,
  • Serena Nik-Zainal

Journal volume & issue
Vol. 43, no. 6
p. 114243

Abstract

Read online

Summary: Xeroderma pigmentosum (XP) is caused by defective nucleotide excision repair of DNA damage. This results in hypersensitivity to ultraviolet light and increased skin cancer risk, as sunlight-induced photoproducts remain unrepaired. However, many XP patients also display early-onset neurodegeneration, which leads to premature death. The mechanism of neurodegeneration is unknown. Here, we investigate XP neurodegeneration using pluripotent stem cells derived from XP patients and healthy relatives, performing functional multi-omics on samples during neuronal differentiation. We show substantially increased levels of 5′,8-cyclopurine and 8-oxopurine in XP neuronal DNA secondary to marked oxidative stress. Furthermore, we find that the endoplasmic reticulum stress response is upregulated and reversal of the mutant genotype is associated with phenotypic rescue. Critically, XP neurons exhibit inappropriate downregulation of the protein clearance ubiquitin-proteasome system (UPS). Chemical enhancement of UPS activity in XP neuronal models improves phenotypes, albeit inadequately. Although more work is required, this study presents insights with intervention potential.

Keywords