Molecules (Jan 2022)

Development and Validation of a Novel HPLC Method to Analyse Metabolic Reaction Products Catalysed by the CYP3A2 Isoform: In Vitro Inhibition of CYP3A2 Enzyme Activity by Aspirin (Drugs Often Used Together in COVID-19 Treatment)

  • Amira Hussain,
  • Declan P. Naughton,
  • James Barker

DOI
https://doi.org/10.3390/molecules27030927
Journal volume & issue
Vol. 27, no. 3
p. 927

Abstract

Read online

Aspirin (also known as acetylsalicylic acid) is a drug intended to treat fever, pain, or inflammation. Treatment of moderate to severe cases of COVID-19 using aspirin along with dexamethasone has gained major attention globally in recent times. Thus, the purpose of this study was to use High-Performance Liquid Chromatography (HPLC) to evaluate the in vitro inhibition of CYP3A2 enzyme activity using aspirin in rat liver microsomes (RLMs). In this study, an efficient and sensitive HPLC method was developed using a reversed phase C18 column (X Bridge 4.6 mm × 150 mm, 3.5 µm) at 243 nm using acetonitrile and water (70:30 v/v). The linearity (r2 > 0.999), precision (50) = 190.92 µM. This indicated that there is a minimal risk of toxicity when dexamethasone and aspirin are co-administrated and a very low risk of toxicity and drug interaction with drugs that are a substrate for CYP3A2 in healthcare settings.

Keywords