Scientific Reports (Oct 2024)
Enhanced knowledge graph recommendation algorithm based on multi-level contrastive learning
Abstract
Abstract Integrating the Knowledge Graphs (KGs) into recommendation systems enhances personalization and accuracy. However, the long-tail distribution of knowledge graphs often leads to data sparsity, which limits the effectiveness in practical applications. To address this challenge, this study proposes a knowledge-aware recommendation algorithm framework that incorporates multi-level contrastive learning. This framework enhances the Collaborative Knowledge Graph (CKG) through a random edge dropout method, which constructs feature representations at three levels: user-user interactions, item-item interactions and user-item interactions. A dynamic attention mechanism is employed in the Graph Attention Networks (GAT) for modeling the KG. Combined with the nonlinear transformation and Momentum Contrast (Moco) strategy for contrastive learning, it can effectively extract high-quality feature information. Additionally, multi-level contrastive learning, as an auxiliary self-supervised task, is jointly trained with the primary supervised task, which further enhances recommendation performance. Experimental results on the MovieLens and Amazon-books datasets demonstrate that this framework effectively improves the performance of knowledge graph-based recommendations, addresses the issue of data sparsity, and outperforms other baseline models across multiple evaluation metrics.
Keywords