Water (Jul 2023)
Spatiotemporal Characterization of Drought Magnitude, Severity, and Return Period at Various Time Scales in the Hyderabad Karnataka Region of India
Abstract
Global climate change is anticipated to have a profound impact on drought occurrences, leading to detrimental consequences for the environment, socioeconomic relations, and ecosystem services. In order to evaluate the extent of drought impact, a comprehensive study was conducted in the Hyderabad–Karnataka region, India. Precipitation data from 31 stations spanning a 50-year period (1967–2017) were analyzed using the standardized precipitation index (SPI) based on gamma distribution. The findings reveal that approximately 15% of the assessed years of experienced drought conditions, with a range of influence between 41% and 76% under SPI_3, and between 43% and 72% under SPI_6. Examining the timescale magnitude frequency provided insights into variations in the severity of drought events across different locations and timescales. Notably, the Ballari (−8.77), Chitapur (−8.22), and Aland (−7.40) regions exhibited the most significant magnitudes of drought events for SPI_3 with a 5-year return period. The heightened risk of recurrent droughts in the study area emphasizes the necessity of integrating SPI in decision-making processes, as such integration can markedly contribute to the development of reliable and sustainable long-term water management strategies at regional and national levels.
Keywords