Agronomy (May 2020)

Colchicine Mutagenesis from Long-term Cultured Adventitious Roots Increases Biomass and Ginsenoside Production in Wild Ginseng (<i>Panax ginseng</i> Mayer)

  • Kim-Cuong Le,
  • Thanh-Tam Ho,
  • Jong-Du Lee,
  • Kee-Yoeup Paek,
  • So-Young Park

DOI
https://doi.org/10.3390/agronomy10060785
Journal volume & issue
Vol. 10, no. 6
p. 785

Abstract

Read online

Panax ginseng Mayer is a perennial herb that has been used as a medicinal plant in Eastern Asia for thousands of years. The aim of this study was to enhance root biomass and ginsenoside content in cultured adventitious roots by colchicine mutagenesis. Adventitious P. ginseng roots were treated with colchicine at different concentrations (100, 200, and 300 mg·L−1) and for different durations (1, 2, and 3 days). Genetic variability of mutant lines was assessed using random amplification of polymorphic DNA (RAPD) analysis. Ginsenoside biosynthesis gene expression, ginsenoside content, enzyme activities, and performance in bioreactor culture were assessed in four mutant lines (100–1-2, 100–1-18, 300–1-16, and 300–2-8). The results showed that ginsenoside productivity was enhanced in all mutant lines, with mutant 100–1-18 exhibiting the most pronounced increase (4.8-fold higher than the control). Expression of some ginsenoside biosynthetic enzymes was elevated in mutant lines. Enzyme activities varied among lines, and lipid peroxidation activity correlated with root biomass. All four lines were suitable for bioreactor cultivation, with mutant 100–1-18 exhibiting the highest biomass after culture scale-up. The results indicated that colchicine mutagenesis of P. ginseng roots increased biomass and ginsenosides production. This technique, and the root lines produced in this study, may be used to increase industrial yields of P. ginseng biomass and ginsenosides.

Keywords