Data Science in Science (Dec 2024)
Biclustering Multivariate Longitudinal Data with Application to Recovery Trajectories of White Matter After Sport-Related Concussion
Abstract
Biclustering is the task of simultaneously clustering the samples and features of a data set. In doing so, subsets of samples that exhibit similar behaviors across subsets of features can be identified. Motivated by a longitudinal diffusion tensor imaging study of sport-related concussion (SRC), we present the problem of biclustering multivariate longitudinal data in which subjects and features are grouped simultaneously based on longitudinal patterns rather than magnitude. We propose a penalized regression based method for solving this problem by exploiting the heterogeneity in the longitudinal patterns within subjects and features. We evaluate the performance of the proposed methods via a simulation study and apply them to the motivating dataset, revealing distinctive patterns of white-matter abnormalities within subgroups of SRC cases.
Keywords