Bio-Protocol (Jun 2019)
Measurement of Sleep and Arousal in Drosophila
Abstract
Sleep is a conserved neurobehavioral state observed in animals with sufficiently complex nervous systems and is critical for survival. While the exact function of sleep remains unknown, the lack of sleep can have a range of physiological and behavioral effects. Studies in invertebrates and vertebrates have identified conserved neural mechanisms and cellular pathways in control of sleep, wakefulness and arousal. Methodologies to measure sleep have ranged from EEG recordings in humans and rodents to in-depth analysis of locomotor patterns in flies, fish and worms. Here we focus on sleep measurements using activity monitoring in the highly versatile experimental model system, Drosophila melanogaster, which is amenable to a number of genetic, physiological and behavioral manipulations. Further, we also describe methods used to manipulate sleep and wakefulness to understand the neural regulation of sleep and how organisms balance sleep, wakefulness and behavioral arousal. Sleep as a behavioral state is regulated by a number of factors including food, environmental conditions, and genetic background. The methodologies described here provide, a high-throughput approach to study neural regulation of sleep and factors that affect this complex behavior.