Applied Sciences (Nov 2023)
Numerical Investigation on the Effect of Wet Steam and Ideal Gas Models for Steam Ejector Driven by Ship Waste Heat
Abstract
Steam ejectors could improve the energy efficiency of ships by efficiently utilizing low-grade waste heat from ships for seawater desalination or cooling. The internal flow characteristics of steam ejectors can be deeply analyzed through numerical simulation, which is of great significance for improving their performance. Due to the influence of the nonequilibrium phase change, the results of the wet steam model and the ideal gas model are significantly different. In this paper, the flow field characteristics of the wet steam model and the ideal gas model under different primary flow pressures (Pm) are compared and analyzed. The results show that the structures of the shock wave train for the wet steam model and the ideal gas model are different under different Pm. When the first shock wave of the shock wave train changes from a compression shock wave to an expansion shock wave, the Pm for the ideal gas model is 75,000 Pa and that for the wet steam model is 55,000 Pa. The phase change reduces the energy loss of the shock wave. With the increase in the Pm, the variation in the length of the shock wave train for the wet steam model decreases by 61%, the variation of the primary temperature at the nozzle exit increases by 60% and the variation in the choke temperature decreases by 50% compared with the ideal gas model. The investigation in this paper provides guidance for the design theory of a ship waste heat steam ejector.
Keywords