Applied Sciences (Oct 2018)
Linking the Effect of Aggregate Interaction to the Compaction Theory for Asphalt Mixtures Using Image Processing
Abstract
This study presents a modified compaction concept of asphalt mixtures based on aggregate frictional behavior using self-developed image processing for measuring the aggregate orientation. The compaction energy index was introduced to evaluate the aggregate orientation on different compaction temperatures. For the better rearrangement of aggregates, there was an optimum temperature at which a preferred orientation exists, providing lower compaction efforts. An excessively high temperature reduced the asphalt contents for lubrication and caused additional aggregate friction to require higher compaction efforts. This phenomenon can be found in the changes of the volume of the effective asphalt binder (Veac) and the absorbed asphalt binder (Pba). The mixture produced higher Veac, at which an optimum compaction temperature required lower compaction energy. Despite being higher than the optimum temperature for the PG62-28 mixture, the Veac decreased by 0.4%. An increase of 0.35% in the Pba was inferred to flow into the aggregates. Clearly, a reduction of lubricant in the mixture caused a higher frictional interaction between aggregates. Changes in the Veac and the Pba can eliminate the viscosity effect for the rearrangement of aggregates. Based on the aggregate orientation and change in mixture volumetrics, the aggregate interaction effect was introduced to the Mohr⁻Coulomb compaction theory to explain the additional friction.
Keywords