Journal of Materials Research and Technology (Jan 2024)

Interface structure and tensile failure behaviour of novel SiCf/Ti–Ti2AlNb hybrid laminated composite material

  • Guoqing Zhang,
  • Haitao Qu,
  • Kang Yang,
  • Wenyi Liu,
  • Hongliang Hou,
  • Bing Zhao,
  • Zhigang Wang,
  • Xingge Wang

Journal volume & issue
Vol. 28
pp. 2163 – 2176

Abstract

Read online

Inspired by the microstructures of shells, SiC fibers (SiCf) are introduced into Ti layers, creating hybrid layers of SiCf/Ti, which are combined with Ti2AlNb foils to prepare multilayer SiCf/Ti–Ti2AlNb hybrids in a hot-pressed sintering instrument. The solid-phase bonding interface, mainly including the α+β biphasic structures and B2-rich phases, guarantees an ideal interface connection between the SiCf/Ti and Ti2AlNb layers after the sintering. Herein, the SiC fibers-made SiCf/Ti–Ti2AlNb presents a higher tensile strength and elasticity modulus on the tensile instrument of Model No. Byes (2010), compared with Ti/Ti2AlNb. During the tensile process, the brittle fractures of SiCf first occur, and the loads are transferred to the bonding interface of the Ti2AlNb and Ti layers, generating the crack propagation and resulting in SiCf/Ti–Ti2AlNb fracture. This is mainly because the crack is extended in succession to the bonding interface that is composed of brittle phases such as O and α2, as well as ductile phases such as α, β and B2. This produces the ductile and brittle ruptures at the bonding interface, forming the ductile-brittle mixture fractures at the SiCf/Ti and Ti2AlNb interfaces. In the case of vertical fractures related to the fiber length, brittle fractures are observed on the SiC fibers, which produce high forces that affect their bonding interfaces, resulting in axial interstices and transverse fractures. These obtained results demonstrate a novel method for structural design and fabrication of the innovative composite materials.

Keywords