International Journal of Applied Earth Observations and Geoinformation (Sep 2022)

Mapping individual abandoned houses across cities by integrating VHR remote sensing and street view imagery

  • Shengyuan Zou,
  • Le Wang

Journal volume & issue
Vol. 113
p. 103018

Abstract

Read online

Abandoned houses (AH) present an utmost challenge confronting the urban environment in contemporary U.S. shrinking cities. Data accessibility is a major hurdle that prevents the acquisition of large-scale AH information at the individual property level. To this end, the latest revolution of open-access remote sensing platforms has witnessed a plethora of multi-source, multi-perspective fine-spatial-resolution data for urban environments, among which very-high-resolution (VHR) top-down view remote sensing images and horizontal-perspective Google Street View (GSV) images are prominent exemplifiers. In this study, we aim to map individual-level abandoned houses across cities by developing a method that can effectively leverage VHR remote sensing and GSV images. The proposed method is composed of four steps. First, we explored the feasibility of the three most relevant and complementary remote sensing data for individual-level AH detection, i.e., daytime VHR images, nighttime light VHR images, and GSV images. Second, we extracted discriminative features that are indicative of housing abandonment conditions from the three disparate data sources. Third, we applied decision-level fusion with Dempster-Shafer Theory (DST) to better leverage the prior knowledge about data effectiveness. In the last step, a geographical random forests (GRF) model was first implemented to improve the predictions of where houses were occluded on GSV images. We mapped individual AH in two typical U.S. shrinking cities, Buffalo, NY, and Cleveland, OH, which allowed us to further explore the individual-property-level spatial characteristics of AH. Results revealed that the proposed DST fusion and GRF prediction consistently achieved promising performance across the two cities. Given the merits of incorporating open-access and multi-perspective data, our proposed method has the potential to be generalized to understanding regional and national-scale urban environments tackling housing abandonment challenges.

Keywords