Plastic and Reconstructive Surgery, Global Open (Mar 2015)

Characterization of a Murine Pressure Ulcer Model to Assess Efficacy of Adipose-derived Stromal Cells

  • Amy L. Strong, PhD, MPH,
  • Annie C. Bowles, MS,
  • Connor P. MacCrimmon, , BSE,
  • Stephen J. Lee, , BSE,
  • Trivia P. Frazier, PhD,
  • Adam J. Katz, MD,
  • Barbara Gawronska-Kozak, PhD,
  • Bruce A. Bunnell, PhD,
  • Jeffrey M. Gimble, MD, PhD

DOI
https://doi.org/10.1097/GOX.0000000000000260
Journal volume & issue
Vol. 3, no. 3
p. e334

Abstract

Read online

Background: As the world’s population lives longer, the number of individuals at risk for pressure ulcers will increase considerably in the coming decades. In developed countries, up to 18% of nursing home residents suffer from pressure ulcers and the resulting hospital costs can account for up to 4% of a nation’s health care budget. Although full-thickness surgical skin wounds have been used as a model, preclinical rodent studies have demonstrated that repeated cycles of ischemia and reperfusion created by exposure to magnets most closely mimic the human pressure ulcer condition. Methods: This study uses in vivo and in vitro quantitative parameters to characterize the temporal kinetics and histology of pressure ulcers in young, female C57BL/6 mice exposed to 2 or 3 ischemia-reperfusion cycles. This pressure ulcer model was validated further in studies examining the efficacy of adipose-derived stromal/stem cell administration. Results: Optimal results were obtained with the 2-cycle model based on the wound size, histology, and gene expression profile of representative angiogenic and reparative messenger RNAs. When treated with adipose-derived stromal/stem cells, pressure ulcer wounds displayed a dose-dependent and significant acceleration in wound closure rates and improved tissue histology. Conclusion: These findings document the utility of this simplified preclinical model for the evaluation of novel tissue engineering and medical approaches to treat pressure ulcers in humans.