Technology in Cancer Research & Treatment (Nov 2020)
Long Noncoding RNA PTPRG Antisense RNA 1 Reduces Radiosensitivity of Nonsmall Cell Lung Cancer Cells Via Regulating MiR-200c-3p/TCF4
Abstract
Background: PTPRG antisense RNA 1 has been well-documented to exert an oncogenic role in diverse neoplasms. However, the precise role of PTPRG antisense RNA 1 in regulating radiosensitivity of nonsmall cell lung cancer cells remains largely elusive. Methods: Expression levels of PTPRG antisense RNA 1 and miR-200c-3p in nonsmall cell lung cancer tissues and cells were detected by quantitative real-time polymerase chain reaction, while transcription factor 4 expression was examined by immunohistochemistry and Western blot. After nonsmall cell lung cancer cells were exposed to X-ray with different doses in vitro , Cell Counting Kit - 8 assay and colony formation assay were conducted to determine the influence of PTPRG antisense RNA 1 on cell viability. Interaction between miR-200c-3p and PTPRG antisense RNA 1 as well as transcription factor 4 was investigated by dual luciferase reporter assay. Result: In nonsmall cell lung cancer tissues, the expressions of PTPRG antisense RNA 1 and transcription factor 4 were significantly upregulated, whereas the expression of miR-200c-3p was downregulated. It was also proved that PTPRG antisense RNA 1 and 3′-untranslated region of transcription factor 4 can bind to miR-200c-3p. Under X-ray irradiation, overexpressed PTPRG antisense RNA 1 could promote the viability and enhance the radioresistance of nonsmall cell lung cancer cells, and this effect was partially weakened by miR-200c-3p mimics. Transcription factor 4 was identified as a target gene of miR-200c-3p, which could be positively regulated by PTPRG antisense RNA 1. Conclusion: PTPRG antisense RNA 1 reduces the radiosensitivity of nonsmall cell lung cancer cells via modulating miR-200c-3p/TCF4 axis.