Advances in Materials Science and Engineering (Jan 2018)

Investigation on Mechanical Properties and Reaction Characteristics of Al-PTFE Composites with Different Al Particle Size

  • Jia-xiang Wu,
  • Xiang Fang,
  • Zhen-ru Gao,
  • Huai-xi Wang,
  • Jun-yi Huang,
  • Shuang-zhang Wu,
  • Yu-chun Li

DOI
https://doi.org/10.1155/2018/2767563
Journal volume & issue
Vol. 2018

Abstract

Read online

Al-PTFE (aluminum-polytetrafluoroethylene) serves as one among the most promising reactive materials (RMs). In this work, six types of Al-PTFE composites with different Al particle sizes (i.e., 50 nm, 1∼2 μm, 6∼7 μm, 12∼14 μm, 22∼24 μm, and 32∼34 μm) were prepared, and quasistatic compression and drop weight tests were conducted to characterize the mechanical properties and reaction characteristics of Al-PTFE composites. The reaction phenomenon and stress-strain curves were recorded by a high-speed camera and universal testing machine. The microstructure of selected specimens was anatomized through adopting a scanning electron microscope (SEM) to correlate the mesoscale structural characteristics to their macroproperties. As the results indicated, in the case of quasistatic compression, the strength of the composites was decreased (the yield strength falling from 22.7 MPa to 13.6 MPa and the hardening modulus declining from 33.3 MPa to 25 MPa) with the increase of the Al particle size. The toughness rose firstly and subsequently decreased and peaked as 116.42 MJ/m3 at 6∼7 μm. The reaction phenomenon occurred only in composites with the Al particle size less than 10 μm. In drop weight tests, six types of specimens were overall reacted. As the Al particle size rose, the ignition energy of the composites enhanced and the composites turned out to be more insensitive to reaction. In a lower strain rate range (10−2·s−1∼102·s−1), Al-PTFE specimens take on different mechanical properties and reaction characteristics in the case of different strain rates. The formation of circumferential open cracks is deemed as a prerequisite for Al-PTFE specimens to go through a reaction.