Physical Review Research (Jun 2020)
Electron pairing by Coulomb repulsion in narrow band structures
Abstract
We study analytically and numerically dynamics and eigenstates of two electrons with Coulomb repulsion on a tight-binding lattice in one and two dimensions. The total energy and momentum of electrons are conserved and we show that for a certain momentum range the dynamics is exactly reduced to an evolution in an effective narrow energy band where the energy conservation forces the two electrons to propagate together through the whole system at moderate or even weak repulsion strength. We argue that such a mechanism of electron pair formation by the repulsive Coulomb interaction is rather generic and that it can be at the origin of unconventional superconductivity in twisted bilayer graphene.