PLoS ONE (Jan 2013)

Variation in the morphology of Bacillus mycoides due to applied force and substrate structure.

  • James P Stratford,
  • Michael A Woodley,
  • Simon Park

DOI
https://doi.org/10.1371/journal.pone.0081549
Journal volume & issue
Vol. 8, no. 12
p. e81549

Abstract

Read online

Response to mechanical force is a well characterised phenomenon in eukaryotic organisms, helping to organise multicellular structures. Mechanotactic responses have only rarely been observed in prokaryotic taxa. This work reports on a morphological change due to variations in applied force and surface structure by Bacillus mycoides Flügge. B. mycoides is a ubiquitous soil organism well known among microbiologists for its characteristic spreading colony morphology. An apparent mechanotactic response is elicited by physical deformation of the gel media on which B.mycoides is growing, including applied forces of compression or tension. Variations in the surface such as curvature produced by casting the agar gel in the presence of curved objects also elicited the change. The morphological change in B.mycoides colonies associated with the application of force manifests as a pattern of parallel rhizoid filaments perpendicular to compressing force and parallel to stretching force in the agar medium. The phenomenon is most clearly demonstrated by reversible changes in the orientation of B. mycoides filaments during time-lapse microscopy.