Molecules (Feb 2023)

Anti-Cancer Effects of Queen Bee Acid (10-Hydroxy-2-Decenoic Acid) and Its Cellular Mechanisms against Human Hepatoma Cells

  • Zafer Saad Al Shehri,
  • Abdullah D. Alanazi,
  • Sultan F. Alnomasy

DOI
https://doi.org/10.3390/molecules28041972
Journal volume & issue
Vol. 28, no. 4
p. 1972

Abstract

Read online

Background: Hepatocellular carcinoma (HCC) is the most common form of liver cancer that occurs in hepatocytes. Although many chemical drugs, e.g., cisplatin, methotrexate, taxis, and doxorubicin are used to treat HCC, there have been numerous reports related to the side effects of these drugs (e.g., emerging drug resistance, bone marrow failure, and gastrointestinal disorders). These issues led scientists to search for the novel anti-cancer drugs, mainly in natural products with greater efficiency and less toxicity. The current survey was intended to assess the anti-cancer effects of queen bee acid (10-Hydroxy-2-Decenoic Acid, 10-HDA) and its cellular mechanisms against the human hepatoma cell line HepG2. Materials and Methods: The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was used to evaluate the effect of 10-HDA on the viability of HepG2 cells. The initial and late apoptosis in the HepG2 cells treated with 10-HDA were assessed by the Annexin-V (AV) assay. The level of the gene and protein expression of some apoptosis genes (e.g., caspase-3, Bcl-2-associated X protein (BAX), and B-cell lymphoma protein 2 (Bcl-2)), Poly (ADP-ribose) polymerases (PARP), and miRNA-34a (miR-34a), were measured by real-time PCR and Western blot. Results: The obtained findings revealed that HepG2 cell viability was markedly reduced (p p p p p < 0.01). Conclusion: The current results confirmed the potent in vitro cytotoxic effects of 10-HDA on HepG2 cells with no significant cytotoxic effects on normal cells. Although its mechanisms of action have not been fully studied, the induction of apoptosis via different pathways was determined as one of the principle mechanisms of action of 10-HDA against HepG2 cells. Nevertheless, additional surveys must be performed to clearly understand the mechanisms of action and safety of this fatty acid.

Keywords