South African Journal of Chemical Engineering (Jul 2024)
Preparation of novel green adsorbent (Tabernaemontana divaricata leaf powder) and evaluation of its dye (malachite green) removal capacity, mechanism, kinetics, and phytotoxicity
Abstract
In this study, a novel green adsorbent, Tabernaemontana divaricata leaf powder (TD), was prepared, and its efficacy in removing malachite green (MG) dye from water, along with the associated mechanism and kinetics, was systematically evaluated for the first time. Characterization of TD was carried out using scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). Optimization of MG dye removal was conducted by varying parameters such as pH, initial dye concentration, contact time, and TD dosage. Results demonstrated that TD exhibited a high adsorption capacity for MG dye (5.2131 mg.g−1), achieving a maximum removal efficiency of 89.5 % under optimized conditions: pH 7.0, initial dye concentration of 20 ppm, contact time of 120 min, TD dosage of 4 g/L, and temperature of 28.1 °C. Kinetic and isotherm models were applied to analyze the experimental data, revealing that the adsorption process most accurately followed Ho's pseudo-second-order kinetic model (R2 = 0.999). The high heats of adsorption observed in the isotherm study suggest prominent electrostatic interactions between adsorbate molecules and the surface, governing the chemisorption mechanism that dominates at the solid-liquid interface. This study underscores the potential of Tabernaemontana divaricata (jasmine) leaf powder as a cost-effective, environmentally friendly, and efficient adsorbent for the remediation of MG dye-contaminated water.