Quantum (Sep 2022)
Periodically refreshed quantum thermal machines
Abstract
We introduce unique class of cyclic quantum thermal machines (QTMs) which can maximize their performance at the finite value of cycle duration $\tau$ where they are most irreversible. These QTMs are based on single-stroke thermodynamic cycles realized by the non-equilibrium steady state (NESS) of the so-called Periodically Refreshed Baths (PReB) process. We find that such QTMs can interpolate between standard collisional QTMs, which consider repeated interactions with single-site environments, and autonomous QTMs operated by simultaneous coupling to multiple macroscopic baths. We discuss the physical realization of such processes and show that their implementation requires a finite number of copies of the baths. Interestingly, maximizing performance by operating in the most irreversible point as a function of $\tau$ comes at the cost of increasing the complexity of realizing such a regime, the latter quantified by the increase in the number of copies of baths required. We demonstrate this physics considering a simple example. We also introduce an elegant description of the PReB process for Gaussian systems in terms of a discrete-time Lyapunov equation. Further, our analysis also reveals interesting connections with Zeno and anti-Zeno effects.