European Journal of Inflammation (Aug 2020)

Study on the effect of on ulcerative colitis in rats induced by 2,4,6-trinitrobenzene sulfonic acid

  • Yi-Hao Che,
  • Zhi-Bin Yang,
  • Han-Chao Zhang,
  • Xiu-Mei Wu,
  • Min-Zhe Sun,
  • Miao Tang,
  • Peng-Chuan Wang,
  • Fu-Neng Geng,
  • Ping Wan,
  • Heng Liu,
  • Miao He,
  • Yu Zhao,
  • Cheng-Gui Zhang

DOI
https://doi.org/10.1177/2058739220942629
Journal volume & issue
Vol. 18

Abstract

Read online

Ulcerative colitis (UC) is a chronic inflammatory disease of intestinal tract, and Periplaneta americana has been found to be effective in the treatment for UC. The purpose of the study was to investigate the therapeutic effect of Periplaneta americana extract Ento-A on UC in rats induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) and to explore its mechanism. The Sprague-Dawley (SD) rats were randomly divided into normal control group; TNBS-treated group; sulfasalazine (SASP) treated group; Ento-A low- (50 mg/kg), medium- (100 mg/kg), and high-dose (200 mg/kg) groups, respectively. The UC model of rats was induced via TNBS. Disease activity index (DAI) was used to evaluate the severity of UC in rats. The macroscopic and microscopic damages of colon were accessed by colon mucosa damage index (CMDI) and histopathological score (HS), respectively. The levels of interleukin-4 (IL-4), interleukin-17 (IL-17), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) in serum and the contents of myeloperoxidase (MPO), transforming growth factor-β1 (TGF-β1), and epidermal growth factor (EGF) in colonic mucosa were measured by enzyme-linked immunosorbent assay (ELISA). Compared with the normal control group, the TNBS-treated group showed increase in DAI, CMDI, HS, IL-17, TNF-α, IFN-γ as well as MPO and decrease in the levels of IL-4, EGF, and TGF-β1. However, Ento-A-administrated groups reversed the changes in the DAI, CMDI, HS, and the cytokines caused by TNBS. The study indicates that Periplaneta americana extract Ento-A can effectively alleviate the inflammation in TNBS-induced UC of rats, and the mechanism of that may be related to restoring the balance of T helper 1 (Th1)/Th2/Th17/T regulatory (Treg) cytokines.