Advances in Meteorology (Jan 2018)

ASCAT Wind Superobbing Based on Feature Box

  • Boheng Duan,
  • Weimin Zhang,
  • Haijin Dai

DOI
https://doi.org/10.1155/2018/3438501
Journal volume & issue
Vol. 2018

Abstract

Read online

Redundant observations impose a computational burden on an operational data assimilation system, and assimilation using high-resolution satellite observation data sets at full resolution leads to poorer analyses and forecasts than lower resolution data sets, since high-resolution data may introduce correlated error in the assimilation. Thus, it is essential to thin the observations to alleviate these problems. Superobbing like other data thinning methods lowers the effect of correlated error by reducing the data density. Besides, it has the added advantage of reducing the uncorrelated error through averaging. However, thinning method using averaging could lead to the loss of some meteorological features, especially in extreme weather conditions. In this paper, we offer a new superobbing method which takes into consideration the meteorological features. The new method shows very good error characteristic, and the numerical simulation experiment of typhoon “Lionrock” (2016) shows that it has a positive impact on the analysis and forecast compared to the traditional superobbing.