Journal of Statistical Software (Jul 2016)

runjags: An R Package Providing Interface Utilities, Model Templates, Parallel Computing Methods and Additional Distributions for MCMC Models in JAGS

  • Matthew J. Denwood

DOI
https://doi.org/10.18637/jss.v071.i09
Journal volume & issue
Vol. 71, no. 1
pp. 1 – 25

Abstract

Read online

The runjags package provides a set of interface functions to facilitate running Markov chain Monte Carlo models in JAGS from within R. Automated calculation of appropriate convergence and sample length diagnostics, user-friendly access to commonly used graphical outputs and summary statistics, and parallelized methods of running JAGS are provided. Template model specifications can be generated using a standard lme4-style formula interface to assist users less familiar with the BUGS syntax. Automated simulation study functions are implemented to facilitate model performance assessment, as well as drop-k type cross-validation studies, using high performance computing clusters such as those provided by parallel. A module extension for JAGS is also included within runjags, providing the Pareto family of distributions and a series of minimally-informative priors including the DuMouchel and half-Cauchy priors. This paper outlines the primary functions of this package, and gives an illustration of a simulation study to assess the sensitivity of two equivalent model formulations to different prior distributions.

Keywords