PLoS ONE (Jan 2019)

Identifying incident dementia by applying machine learning to a very large administrative claims dataset.

  • Vijay S Nori,
  • Christopher A Hane,
  • David C Martin,
  • Alexander D Kravetz,
  • Darshak M Sanghavi

DOI
https://doi.org/10.1371/journal.pone.0203246
Journal volume & issue
Vol. 14, no. 7
p. e0203246

Abstract

Read online

Alzheimer's disease and related dementias (ADRD) are highly prevalent conditions, and prior efforts to develop predictive models have relied on demographic and clinical risk factors using traditional logistical regression methods. We hypothesized that machine-learning algorithms using administrative claims data may represent a novel approach to predicting ADRD. Using a national de-identified dataset of more than 125 million patients including over 10,000 clinical, pharmaceutical, and demographic variables, we developed a cohort to train a machine learning model to predict ADRD 4-5 years in advance. The Lasso algorithm selected a 50-variable model with an area under the curve (AUC) of 0.693. Top diagnosis codes in the model were memory loss (780.93), Parkinson's disease (332.0), mild cognitive impairment (331.83) and bipolar disorder (296.80), and top pharmacy codes were psychoactive drugs. Machine learning algorithms can rapidly develop predictive models for ADRD with massive datasets, without requiring hypothesis-driven feature engineering.