Energy Material Advances (Jan 2021)

Reviewing the Safe Shipping of Lithium-Ion and Sodium-Ion Cells: A Materials Chemistry Perspective

  • Ashish Rudola,
  • Christopher J. Wright,
  • Jerry Barker

DOI
https://doi.org/10.34133/2021/9798460
Journal volume & issue
Vol. 2021

Abstract

Read online

High energy density lithium-ion (Li-ion) batteries are commonly used nowadays. Three decades’ worth of intense research has led to a good understanding on several aspects of such batteries. But, the issue of their safe storage and transportation is still not widely understood from a materials chemistry perspective. Current international regulations require Li-ion cells to be shipped at 30% SOC (State of Charge) or lower. In this article, the reasons behind this requirement for shipping Li-ion batteries are firstly reviewed and then compared with those of the analogous and recently commercialized sodium-ion (Na-ion) batteries. For such alkali-ion batteries, the safest state from their active materials viewpoint is at 0 V or zero energy, and this should be their ideal state for storage/shipping. However, a “fully discharged” Li-ion cell used most commonly, composed of graphite-based anode on copper current collector, is not actually at 0 V at its rated 0% SOC, contrary to what one might expect—the detailed mechanism behind the reason for this, namely, copper dissolution, and how it negatively affects cycling performance and cell safety, will be summarized herein. It will be shown that Na-ion cells, capable of using a lighter and cheaper aluminum current collector on the anode, can actually be safely discharged to 0 V (true 0% SOC) and beyond, even to reverse polarity (negative voltages). It is anticipated that this article spurs further research on the 0 V capability of Na-ion systems, with some suggestions for future studies provided.