Nature Communications (Apr 2019)

An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data

  • Lu Cheng,
  • Siddharth Ramchandran,
  • Tommi Vatanen,
  • Niina Lietzén,
  • Riitta Lahesmaa,
  • Aki Vehtari,
  • Harri Lähdesmäki

DOI
https://doi.org/10.1038/s41467-019-09785-8
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 11

Abstract

Read online

Longitudinal data are common in biomedical research, but their analysis is often challenging. Here, the authors present an additive Gaussian process regression model specifically designed for statistical analysis of longitudinal experimental data.