Water (Feb 2018)

Quantifying Climatic Impact on Reference Evapotranspiration Trends in the Huai River Basin of Eastern China

  • Meng Li,
  • Ronghao Chu,
  • Shuanghe Shen,
  • Abu Reza Md. Towfiqul Islam

DOI
https://doi.org/10.3390/w10020144
Journal volume & issue
Vol. 10, no. 2
p. 144

Abstract

Read online

Reference evapotranspiration (ETref) is an important study object for hydrological cycle processes in the context of drought-flood risks of the Huai River Basin (HRB). In this study, the FAO-56 Penman–Monteith (PM) model was employed to calculate seasonal and annual ETref based on 137 meteorological station data points in HRB from 1961 to 2014. The Mann–Kendall (MK) trend analysis was adopted together with Theil–Sen’s estimator to detect tendencies of ETref and climate factors. Furthermore, a developed differential equation method based on the FAO-56 PM model was applied to quantify the sensitivities of ETref to meteorological factors and their contributions to ETref trends. The results showed that the ETref demonstrated a strong spatially heterogeneity in the whole HRB at each time scale. ETref showed a significant decreasing trend in the upper-middle HRB and Yi-Shu-Si River Basin, especially at the annual time scale, in growing season and summer, while a generally increasing trend in ETref was detected in the lower HRB, and the significance only showed in spring. These phenomena could be reasonably explained by a significantly increasing mean temperature (TA), a significantly decreasing wind speed (WS), solar radiation (SR), and a slightly decreasing relative humidity (RH). The most sensitive factor to ETref was RH in most sub-regions and most time scales, except in the growing season and summer. Based on the developed differential equation method, the dominant factor of the decreasing ETref was WS in the annual time scale, spring, autumn, and winter in most sub-regions, except the lower HRB, which then shifted to SR in the growing season and summer. However, in the lower HRB, the significantly decreasing RH was the most dominant factor, especially in the annual time scale, growing season, and spring, which might be responsible for the slightly increasing ETref there.

Keywords