PLoS ONE (Jan 2020)
Serum glutamate dehydrogenase activity enables early detection of liver injury in subjects with underlying muscle impairments.
Abstract
Serum activities of alanine and aspartate aminotransferases (ALT and AST) are used as gold standard biomarkers for the diagnosis of hepatocellular injury. Since ALT and AST lack liver specificity, the diagnosis of the onset of hepatocellular injury in patients with underlying muscle impairments is severely limited. Thus, we evaluated the potential of glutamate dehydrogenase (GLDH) as a liver specific alternative biomarker of hepatocellular injury. In our study, serum GLDH in subjects with Duchene muscular dystrophy (DMD) was equivalent to serum GLDH in age matched healthy subjects, while serum ALT was increased 20-fold in DMD subjects. Furthermore, serum GLDH in 131 subjects with variety of muscle impairments was similar to serum GLDH of healthy subjects while serum ALT corelated with serum creatine kinase, a widely accepted biomarker of muscle impairment. In addition, significant elevations of ALT, AST, and CK were observed in a case of a patient with rhabdomyolysis, while serum GLDH stayed within the normal range until the onset of hypoxia-induced liver injury. In a mouse model of DMD (DMDmdx), serum GLDH but not serum ALT clearly correlated with the degree of acetaminophen-induced liver injury. Taken together, our data support the utility of serum GLDH as a liver-specific biomarker of liver injury that has a potential to improve diagnosis of hepatocellular injury in patients with underlying muscle impairments. In drug development, GLDH may have utility as a biomarker of drug induced liver injury in clinical trials of new therapies to treat muscle diseases such as DMD.