Investigative and Clinical Urology (Jul 2022)

Understanding cavitation-related mechanism of therapeutic ultrasound in the field of urology: Part I of therapeutic ultrasound in urology

  • Sung Yong Cho,
  • Ohbin Kwon,
  • Seong-Chan Kim,
  • Hyunjae Song,
  • Kanghae Kim,
  • Min Joo Choi

DOI
https://doi.org/10.4111/icu.20220059
Journal volume & issue
Vol. 63, no. 4
pp. 385 – 393

Abstract

Read online

Shock waves are commonly used in the field of urology. They have two phases, positive and negative, and the bubble generation is roughly classified into acoustic cavitation (AC) and laser-induced cavitation (LIC). We evaluated the occurrence of cavitation, its duration, the area of interest, and the maximal diameter of the cavitation bubbles. Changes in AC occurred at 0.2 ms with the highest number of bubbles and disappeared at 0.6 ms. The bubble size was 2 mm in diameter. Changes in LIC bubbles were observed in three pulse modes. The short pulse showed an initial bubble starting at 0.005 ms, which reached its largest size at 0.4 to 0.6 ms. The long pulse showed an initial bubble starting at 0.005 ms, which reached its largest size at 0.4 ms with the formation of an additional lagena-shaped bubble at 0.6 ms. The distance mode of MOSES showed two signal peaks with the formation of two consecutive bubbles at 0.2 and 0.6 ms. The main difference in the laser beams between the long-pulse and the MOSES modes was the continuity and the peak power of the laser beam. The diameters parallel to the laser direction were 6.8, 8.6, and 9.7 mm at 1, 2, and 3 J, respectively, in the short pulse. While the cavitation bubbles rupture, ejectile force occurs in numerous directions, transmitting high enough energy to break the targets. Cavitation bubbles should be regarded as energy and the mediators of energy for stone fragmentation and tissue destruction.

Keywords