Foods (Jun 2022)

Modification of <i>Artichoke</i> Dietary Fiber by Superfine Grinding and High-Pressure Homogenization and Its Protection against Cadmium Poisoning in Rats

  • Renwei Zhu,
  • Tianhui Xu,
  • Bian He,
  • Yayi Wang,
  • Linwei Zhang,
  • Liang Huang

DOI
https://doi.org/10.3390/foods11121716
Journal volume & issue
Vol. 11, no. 12
p. 1716

Abstract

Read online

This study was carried out to investigate the effects of superfine grinding (SP) and high-pressure homogenization (HPH) on the structural and physicochemical properties of artichoke dietary fiber (ADF), as well as the protective effects against cadmium poisoning in rats. The structural characteristics and physicochemical properties of ADF, HPH-ADF (ADF treated by HPH) and CM-ADF (ADF treated by SP and HPH) were determined, and cadmium chloride (CdCl2) was induced by exposing rats for 7 weeks. The amounts of creatinine and urea; the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum; the quantity of red blood cells, hemoglobin, white blood cells and neutrophil proportion in blood samples; and the activity of glutathione peroxidase (GSH-Px) in liver tissue were analyzed. Hematoxylin-eosin (HE) staining was performed to analyze the tissue structure and pathology of the liver and testis. The results showed that ADF subjected to HPH and SP-HPH exhibited increased content of soluble dietary fiber (SDF) (p p 2 intervention led to a significant increase in AST, ALT, creatinine, urea, neutrophil proportion and white blood cell count, as well as a significant decrease in GSH-Px activity, red blood cell count and hemoglobin (HGB) (p p < 0.05). H&E staining results showed that steatosis in the liver was significantly reduced, whereas testicular tissue edema was improved. These results indicate that ADF exhibited positive activity against cadmium poisoning in rats and that CM-ADF had a better protective effect than ADF and HPH-ADF. ADF has specific potential to be used in health foods or therapeutic drugs, providing a reference for the development and utilization of artichoke waste.

Keywords