Applied Sciences (Apr 2022)

An Adaptive Three-Axis Attitude Estimation Method Based on Multi-Sensor Fusion for Optoelectronic Platform

  • Yawen Kong,
  • Dapeng Tian,
  • Yutang Wang

DOI
https://doi.org/10.3390/app12073693
Journal volume & issue
Vol. 12, no. 7
p. 3693

Abstract

Read online

Optoelectronic platform is an important payload in the field of aerospace and widely used in geographic mapping, measurement, and positioning. In order to obtain high-precision attitude measurement, gyro and accelerometer are applied in the feedback loop of light of sight (LOS) control system of optoelectronic platform. Aiming at compensating for gyro drift and maneuvering acceleration disturbance, an adaptive 3-axis attitude estimation method is proposed in this paper. An adaptive threshold criterion is designed by applying the accelerometer data in the sliding window. The threshold is determined in real time to judge whether the maneuvering acceleration exists. If it exists, the angular attitude error is compensated for by the gyro drift model. Otherwise, the angular attitude error is compensated by multi-sensor fusion. Furthermore, a phase-lag-free low pass filter (LPF) is applied to compensate for the phase lag error introduced in the above attitude estimation process. Compared with the angular attitude calculated by gyro, the root mean square error (RMSE) of the proposed method in roll, pitch, and yaw attitude decreased 44.23%, 49.91%, and 46.21%, respectively. In addition, the proposed method can estimate the attitude accurately without obvious phase lag when the maneuvering acceleration disturbance exists. The focus of this paper is to improve the performance of LOS motion control system of optoelectronic platform from the perspective of sensor signal processing. This method is suitable for aerospace applications with high-precision measurement and positioning requirements without maneuver interference, drift error and phase lag.

Keywords