BMC Veterinary Research (Sep 2018)
Haemodynamic changes during propofol induction in dogs: new findings and approach of monitoring
Abstract
Abstract Background Propofol is one of the most widely used injectable anaesthetic agents in veterinary practice. Cardiovascular effects related to propofol use in dogs remain less well defined. The main objective of this study was to evaluate the haemodynamic changes during induction of general anaesthesia with propofol in healthy dogs, by a beat-to-beat continuous monitoring. All dogs were premedicated with intramuscular acepromazine (0.015 mg/kg) and methadone (0.15 mg/kg). Transthoracic echocardiography was used to measure the velocity time integral (VTI) of the left ventricular outflow tract. A syringe driver, programmed to deliver propofol 5 mg/kg over 30 s followed by a continuous infusion of 25 mg/kg/h, was used to induce and maintain anaesthesia. From the initiation of propofol administration, heart rate (HR) and mean invasive arterial blood pressure (MAP) were recorded every 5 s for 300 s, while aortic blood flow was continuously recorded and stored for 300 S. maximum cardiovascular depression was defined the lowest MAP (MAP_Tpeak) recorded during the monitored interval. VTI and VTI*HR were calculated at 0, 30, 90, 120, 150 and 300 s post administration of propofol, and at MAP_Tpeak. Haemodynamic effects of propofol in relation to plasma and biophase concentrations were also evaluated by pharmacokinetics simulation. Results The median (range) HR was significantly higher (p = 0.006) at the moment of maximum hemodynamic depression (Tpeak) [105(70–148) bpm] compared with pre-induction values (T0) [65(50–120) bpm]. The median (range) MAP was significantly lower (p < 0.001) at Tpeak [61(51–69) mmHg] compared with T0 [88(72–97) mmHg]. The median (range) VTI and VTI*HR were similar at the two time points [11.9(8.1–17.3) vs 13,3(9,4-16,5) cm, and 1172(806–1554) vs 1002(630–1159) cm*bpm, respectively]. Conclusions Induction of anaesthesia with propofol causes a drop of arterial pressure in healthy dogs, however cardiac output is well maintained by compensatory chronotropic response. The magnitude of MAP_Tpeak may be strictly related with propofol plasma concentration.
Keywords