Engineering (Apr 2023)
Predictions of Additive Manufacturing Process Parameters and Molten Pool Dimensions with a Physics-Informed Deep Learning Model
Abstract
Molten pool characteristics have a significant effect on printing quality in laser powder bed fusion (PBF), and quantitative predictions of printing parameters and molten pool dimensions are critical to the intelligent control of the complex processes in PBF. Thus far, bidirectional predictions of printing parameters and molten pool dimensions have been challenging due to the highly nonlinear correlations involved. To address this issue, we integrate an experiment on molten pool characteristics, a mechanistic model, and deep learning to achieve both forward and inverse predictions of key parameters and molten pool characteristics during laser PBF. The experiment provides fundamental data, the mechanistic model significantly augments the dataset, and the multilayer perceptron (MLP) deep learning model predicts the molten pool dimensions and process parameters based on the dataset built from the experiment and the mechanistic model. The results show that bidirectional predictions of the molten pool dimensions and process parameters can be realized, with the highest prediction accuracies approaching 99.9% and mean prediction accuracies of over 90.0%. Moreover, the prediction accuracy of the MLP model is closely related to the characteristics of the dataset—that is, the learnability of the dataset has a crucial impact on the prediction accuracy. The highest prediction accuracy is 97.3% with enhancement of the dataset via the mechanistic model, while the highest prediction accuracy is 68.3% when using only the experimental dataset. The prediction accuracy of the MLP model largely depends on the quality of the dataset as well. The research results demonstrate that bidirectional predictions of complex correlations using MLP are feasible for laser PBF, and offer a novel and useful framework for the determination of process conditions and outcomes for intelligent additive manufacturing.