Mathematics (Apr 2022)

A Novel Intelligent ANFIS for the Dynamic Model of Photovoltaic Systems

  • Abdelhady Ramadan,
  • Salah Kamel,
  • I. Hamdan,
  • Ahmed M. Agwa

DOI
https://doi.org/10.3390/math10081286
Journal volume & issue
Vol. 10, no. 8
p. 1286

Abstract

Read online

Developing accurate models for photovoltaic (PV) systems has a significant impact on the evaluation of the accuracy and testing of PV systems. Artificial intelligence (AI) is the science of developing machine jobs to be more intelligent, similar to the human brain. Involving AI techniques in modeling has a significant modification in the accuracy of the developed models. In this paper, a novel dynamic PV model based on AI is proposed. The proposed dynamic PV model was designed based on an adaptive neuro-fuzzy inference system (ANFIS). ANFIS is a combination of a neural network and a fuzzy system; thus, it has the advantages of both techniques. The design process is well discussed. Several types of membership functions, different numbers of training, and different numbers of membership functions are tested via MATLAB simulations until the AI requirements of the ANFIS model are satisfied. The obtained model is evaluated by comparing the model accuracy with the classical dynamic models proposed in the literature. The root mean square error (RMSE) of the real PV system output current is compared with the output current of the proposed PV model. The ANFIS model is trained based on input–output data captured from a real PV system under specified irradiance and temperature conditions. The proposed model is compared with classical dynamic PV models such as the integral-order model (IOM) and fractional-order model (FOM), which have been proposed in the literature. The use of ANFIS to model dynamic PV systems achieves an accurate dynamic PV model in comparison with the classical dynamic IOM and FOM.

Keywords