Energies (Mar 2024)

Transient Synchronous Stability Analysis of Grid-Forming Photovoltaic Grid-Connected Inverters during Asymmetrical Grid Faults

  • Wenwen He,
  • Jun Yao,
  • Hao Xu,
  • Qinmin Zhong,
  • Ruilin Xu,
  • Yuming Liu,
  • Xiaoju Li

DOI
https://doi.org/10.3390/en17061399
Journal volume & issue
Vol. 17, no. 6
p. 1399

Abstract

Read online

Compared with the traditional grid-following photovoltaic grid-connected converter (GFL-PGC), the grid-forming photovoltaic grid-connected converter (GFM-PGC) can provide voltage and frequency support for power systems, which can effectively enhance the stability of power electronic power systems. Consequently, GFM-PGCs have attracted great attention in recent years. When an asymmetrical short-circuit fault occurs in the power grid, GFM-PGC systems may experience transient instability, which has been less studied so far. In this paper, a GFM-PGC system is investigated under asymmetrical short-circuit fault conditions. A novel Q-V droop control structure is proposed by improving the traditional droop control. The proposed control structure enables the system to accurately control the positive- and negative-sequence reactive current without switching the control strategy during the low-voltage ride-through (LVRT) period so that it can meet the requirements of the renewable energy grid code. In addition, a dual-loop control structure model of positive- and negative-sequence voltage and current is established for the GFM-PGC system under asymmetrical short-circuit fault conditions. Based on the symmetrical component method, the composite sequence network of the system is obtained under asymmetrical short-circuit fault conditions, and positive- and negative-sequence power-angle characteristic curves are analyzed. The influence law of system parameters on the transient synchronous stability of positive- and negative-sequence systems is quantitatively analyzed through the equal area criterion. Finally, the correctness of the theoretical analysis is verified by simulation and hardware-in-the-loop experiments.

Keywords