Studies in Engineering Education (Apr 2021)
A Scoping Literature Review of Engineering Thriving to Redefine Student Success
Abstract
Background: The importance of thriving is well-established, but little is known about thriving for undergraduate engineering students. We introduce engineering thriving as the process by which engineering students develop optimal functioning in undergraduate engineering programs. Since thriving is currently underexplored in the engineering education literature, we investigated the larger body of literature on engineering student success. Purpose: We introduce the concept of 'engineering thriving' to synthesize the largely discrete existing bodies of literature on engineering student success to bring together many different perspectives, methodological approaches, and findings that shape our understanding of engineering thriving. Our work on thriving unites disparate lines of research on engineering student success, challenges the assumption that addressing barriers automatically leads to success, and strives to change the way engineering education views student success. Scope/Method: We used the scoping literature review method to investigate papers on undergraduate engineering student success. Four databases were searched, yielding 726 initial papers that studied separate dimensions of engineering student success, such as academic, personal, cognitive, and behavioral. We integrated the relationships among these dimensions to develop an understanding of engineering thriving. Our final analysis included 68 papers after removing duplicates and applying selection criteria. Conclusions: Our findings indicate that an engineering student thriving includes multiple dimensions of success, involves cyclical processes of growth and adaptation, and consists of synergistic competencies that should ideally be studied together with as many other competencies as possible. These findings support the conclusion that engineering thriving can be understood as helping students manage constantly changing internal and external factors within the broader engineering education system.
Keywords