Boundary Value Problems (Dec 2008)

Hermitean Cauchy Integral Decomposition of Continuous Functions on Hypersurfaces

  • Frank Sommen,
  • Dixan Peña Peña,
  • Hennie De Schepper,
  • Bram De Knock,
  • Fred Brackx,
  • Juan Bory Reyes,
  • Ricardo Abreu Blaya

DOI
https://doi.org/10.1155/2008/425256
Journal volume & issue
Vol. 2008

Abstract

Read online

We consider Hölder continuous circulant (2×2) matrix functions G21 defined on the Ahlfors-David regular boundary Γ of a domain Ω in ℝ2n. The main goal is to study under which conditions such a function G21 can be decomposed as G21=G21+-G21-, where the components G21± are extendable to two-sided H-monogenic functions in the interior and the exterior of Ω, respectively. H-monogenicity is a concept from the framework of Hermitean Clifford analysis, a higher dimensional function theory centered around the simultaneous null solutions of two first-order vector-valued differential operators, called Hermitean Dirac operators. H-monogenic functions then are the null solutions of a (2×2) matrix Dirac operator, having these Hermitean Dirac operators as its entries; such functions have been crucial for the development of function theoretic results in the Hermitean Clifford context.