Atmosphere (May 2022)

Characterizing Real-World Particle-Bound Polycyclic Aromatic Hydrocarbon Emissions from Diesel-Fueled Construction Machines

  • Narayan Babu Dhital,
  • Lin-Chi Wang,
  • Hsi-Hsien Yang,
  • Nicholas Kiprotich Cheruiyot,
  • Che-Hsuan Lee

DOI
https://doi.org/10.3390/atmos13050766
Journal volume & issue
Vol. 13, no. 5
p. 766

Abstract

Read online

This study employed an onboard emission measurement system to measure the real-world emission factors of particulate matter (PM), particle-bound polycyclic aromatic hydrocarbons (PAHs), and gaseous air pollutants for different types of diesel-fueled non-road construction machines operated inside confined spaces within a brick manufacturing factory located in Taiwan. To the best knowledge of the authors, this is the first study that reports real-world PM, PAH, and gaseous pollutant emission factors for non-road engines in Taiwan. The mean real-world fuel-specific emission factors of PM, carbon monoxide, total hydrocarbons, and nitric oxide were 0.712–1.17, 8.27–17.9, 3.04–5.77, and 38.1–96.8 g/kg-fuel, respectively, for the test machines. Likewise, mean ΣPAHs emission factors ranged from 157 to 230 μg/kg-fuel for three types of test machines. Further, the average emission of particle-bound PAH per unit PM emission ranged from 213 to 384 μg-PAH/g-PM. Among the analyzed PAHs, the medium-molecular weight (3- and 4-ring) compounds contributed to the largest share of particle-bound PAH emissions. However, in terms of Benzo[a]pyrene equivalent (BaPeq) toxicity, the high-molecular weight (5- and 6-ring) PAHs were more important, as they had the highest BaPeq toxic emission factors. This study provides detailed composition and emission factors of particle-bound PAHs in non-road diesel construction machine emissions, which may be useful as a chemical fingerprint for source apportionment studies.

Keywords