EJNMMI Research (Jul 2018)

Discriminating radiation injury from recurrent tumor with [18F]PARPi and amino acid PET in mouse models

  • Patrick L. Donabedian,
  • Susanne Kossatz,
  • John A. Engelbach,
  • Stephen A. Jannetti,
  • Brandon Carney,
  • Robert J. Young,
  • Wolfgang A. Weber,
  • Joel R. Garbow,
  • Thomas Reiner

DOI
https://doi.org/10.1186/s13550-018-0399-z
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background Radiation injury can be indistinguishable from recurrent tumor on standard imaging. Current protocols for this differential diagnosis require one or more follow-up imaging studies, long dynamic acquisitions, or complex image post-processing; despite much research, the inability to confidently distinguish between these two entities continues to pose a significant dilemma for the treating clinician. Using mouse models of both glioblastoma and radiation necrosis, we tested the potential of poly(ADP-ribose) polymerase (PARP)-targeted PET imaging with [18F]PARPi to better discriminate radiation injury from tumor. Results In mice with experimental radiation necrosis, lesion uptake on [18F]PARPi-PET was similar to contralateral uptake (1.02 ± 0.26 lesion/contralateral %IA/ccmax ratio), while [18F]FET-PET clearly delineated the contrast-enhancing region on MR (2.12 ± 0.16 lesion/contralateral %IA/ccmax ratio). In mice with focal intracranial U251 xenografts, tumor visualization on PARPi-PET was superior to FET-PET, and lesion-to-contralateral activity ratios (max/max, p = 0.034) were higher on PARPi-PET than on FET-PET. Conclusions A murine model of radiation necrosis does not demonstrate [18F]PARPi avidity, and [18F]PARPi-PET is better than [18F]FET-PET in distinguishing radiation injury from brain tumor. [18F]PARPi-PET can be used for discrimination between recurrent tumor and radiation injury within a single, static imaging session, which may be of value to resolve a common dilemma in neuro-oncology.

Keywords