Microbiology Spectrum (Aug 2023)
Seryl-tRNA Synthetase Shows a Noncanonical Activity of Upregulating Laccase Transcription in Trametes hirsuta AH28-2 Exposed to Copper Ion
Abstract
ABSTRACT The function of Seryl-tRNA synthetase in fungi during gene transcription regulation beyond translation has not been reported. Here, we report a seryl-tRNA synthetase, ThserRS, which can negatively regulate laccase lacA transcription in Trametes hirsuta AH28-2 under exposure to copper ion. ThserRS was obtained through yeast one-hybrid screening using a bait sequence of lacA promoter (−502 to −372 bp). ThserRS decreased while lacA increased at the transcription level in T. hirsuta AH28-2 in the first 36 h upon CuSO4 induction. Then, ThserRS was upregulated, and lacA was downregulated. ThserRS overexpression in T. hirsuta AH28-2 resulted in a decrement in lacA transcription and LacA activity. By comparison, ThserRS silencing led to increased LacA transcripts and activity. A minimum of a 32-bp DNA fragment containing two putative xenobiotic response elements could interact with ThserRS, with a dissociation constant of 919.9 nM. ThserRS localized in the cell cytoplasm and nucleus in T. hirsuta AH28-2 and was heterologously expressed in yeast. ThserRS overexpression also enhanced mycelial growth and oxidative stress resistance. The transcriptional level of several intracellular antioxidative enzymes in T. hirsuta AH28-2 was upregulated. Our results demonstrate a noncanonical activity of SerRS that acts as a transcriptional regulation factor to upregulate laccase expression at an early stage after exposure to copper ions. IMPORTANCE Seryl-tRNA synthetase is well known for the attachment of serine to the corresponding cognate tRNA during protein translation. In contrast, its functions beyond translation in microorganisms are underexplored. We performed in vitro and cell experiments to show that the seryl-tRNA synthetase in fungi with no UNE-S domain at the carboxyl terminus can enter the nucleus, directly interact with the promoter of the laccase gene, and negatively regulate the fungal laccase transcription early upon copper ion induction. Our study deepens our understanding of the Seryl-tRNA synthetase noncanonical activities in microorganisms. It also demonstrates a new transcription factor for fungal laccase transcription.
Keywords