Arabian Journal of Chemistry (May 2020)

Removal of phenol from aqueous solution by adsorption onto hematite (α-Fe2O3): Mechanism exploration from both experimental and theoretical studies

  • Younes Dehmani,
  • Awad A. Alrashdi,
  • Hassane Lgaz,
  • Taibi Lamhasni,
  • Sadik Abouarnadasse,
  • Ill-Min Chung

Journal volume & issue
Vol. 13, no. 5
pp. 5474 – 5486

Abstract

Read online

Iron oxides in general and especially hematite, α-Fe2O3 have been proved promising materials for efficient removal of various organic pollutants. Herein, we report a successful preparation of hematite (α-Fe2O3) by a facile precipitation method and its potential application in the removal of phenol from wastewater. The prepared material was subjected to extensive characterization using a variety of techniques such as scanning electron microscope coupled with energy-dispersive X-ray spectroscopy (SEM/EDX), X-ray diffraction (XRD), and the Brunauer Emmett Teller (BET) method. The operating conditions were optimized to improve the adsorption process efficiently. The adsorption analysis showed an adsorption capacity of 16.17 mg g−1 towards phenol at 30 °C. The reaction kinetics and potential rate-limiting steps were studied by Lagergren's pseudo-first-order and pseudo-second-order models, and it was found that the pseudo-second-order accurately described the adsorption kinetics. Freundlich and Langmuir adsorption isotherms models were applied, and the quality of the fittings clearly shows that the Langmuir model well describes the phenol adsorption on the hematite. The interaction mechanism between phenol and α-Fe2O3(0 0 1) surface was further addressed by Density Functional Theory (DFT) calculations and molecular dynamics (MD) simulations. Experimental and theoretical results indicate that there is strong evidence for the decisive effect of π–π interactions and H-bonds on the adsorption capacity.

Keywords