MATEC Web of Conferences (Jan 2018)
Geometrically nonlinear free and forced vibrations of Euler-Bernoulli multi-span beams
Abstract
The objective of this paper is to establish the formulation of the problem of nonlinear transverse forced vibrations of uniform multi-span beams, with several intermediate simple supports and general end conditions, including use of translational and rotational springs at the ends. The beam bending vibration equation is first written at each span and then the continuity requirements at each simple support are stated, in addition to the beam end conditions. This leads to a homogeneous linear system whose determinant must vanish in order to allow nontrivial solutions to be obtained. The formulation is based on the application of Hamilton’s principle and spectral analysis to the problem of nonlinear forced vibrations occurring at large displacement amplitudes, leading to the solution of a nonlinear algebraic system using numerical or analytical methods. The nonlinear algebraic system has been solved here in the case of a four span beam in the free regime using an approximate method developed previously (second formulation) leading to the amplitude dependent fundamental nonlinear mode of the multi-span beam and to the corresponding backbone curves. Considering the nonlinear regime, under a uniformly distributed excitation harmonic force, the calculation of the corresponding generalised forces has led to the conclusion that the nonlinear response involves predominately the fourth mode. Consequently, an analysis has been performed in the neighbourhood of this mode, based on the single mode approach, to obtain the multi-span beam nonlinear frequency response functions for various excitation levels.