PLoS ONE (Jan 2014)
Preparation and characterization of a novel aspirin derivative with anti-thrombotic and gastric mucosal protection properties.
Abstract
The use of acetylsalicylic acid (ASP) is limited by its adverse effects, especially the effect on the gastric mucosa. To address this problem, we synthesized a derivative form of ASP, prepared by modification of ASP with nano-hydroxyapatite (a kind of inorganic particle containing Ca(2+)). The derivative was named Ca-ASP. Structural study showed that Ca-ASP was a kind of carboxylate containing intramolecular hydrogen bonds. Rats given a high dose of Ca-ASP (5 mmol per kg body weight) showed similar anti-thrombotic activity as those given the same dose of ASP, but had much lower gastric mucosal damage than ASP (UI: 2 versus UI: 12.5). These rats also showed reduced expression of COX-2, but their COX-1 expression was similar to that of control rats, but significantly higher than that of ASP-administered rats. Furthermore, the level of prostaglandin E2 (PGE2) was up-regulated in Ca-ASP-administered rats compared to ASP-administered rats. Taken together, the results showed that Ca-ASP possessed similar antithrombotic activity as ASP but without the side effect associated with ASP, and the underlying mechanism may center on inhibiting COX-2 without inhibiting COX-1, and thus favouring the production of PGE2, the prostaglandin that plays a vital role in the suppression of platelet aggregation and thrombosis, as well as in the repair of gastric damage.