Redai dili (Jun 2024)

Joint Probability Distribution of Typhoon Disaster Chain "Strong Wind-Rainstorm- Storm Surge" Based on C-Vine Copula Function

  • Zhou Ziying,
  • Yang Saini,
  • Liu Xiaoyan,
  • Tang Jiting,
  • Shi Yongguo

DOI
https://doi.org/10.13284/j.cnki.rddl.20230928
Journal volume & issue
Vol. 44, no. 6
pp. 1036 – 1046

Abstract

Read online

Typhoons and their associated disaster chains pose serious threats to the lives and property of coastal residents, and they remain a focal point for research and response. Previous studies on typhoon disaster chains often employed high-dimensional symmetric Copula models to establish the joint distribution of multiple hazard factors, however they failed to explore the complex nonlinear and asymmetric dependencies among them. This study aimed to depict these complex relationships more comprehensively and efficiently to provide a more accurate typhoon hazard assessment. Focusing on Zhoushan, a city comprising numerous islands in Zhejiang Province that faces multiple typhoon threats, this study employed the C-Vine Copula function to model the complex dependencies among "strong wind-rainstorm-storm surge" in the typhoon disaster chain. Utilizing observational data from 1979 to 2018, this study involves three main steps: first, fitting the marginal distribution of each hazard factor and identifying the best one from Lognormal, Gamma, GEV (Generalized Extreme Value), and Burr functions based on the K-S test; second, fitting the bivariate joint distributions of wind speed-rainfall and wind speed-storm surge using Gaussian, Clayton, Gumbel, Frank, and Joe Copula functions, and determining the best fit based on the AIC (Akaike Information Criterion); and finally, estimating the trivariate joint probability distribution and corresponding return periods for wind speed-rainfall-storm surge using the C-Vine Copula function. This revealed (1) a strong correlation between wind speed and rainfall observed within regular value ranges (non-extreme conditions), were best represented by the Frank Copula, In addition, wind speed and storm surge exhibit an upper-tail dependence, best captured by the Gumbel Copula. (2) The rainfall distribution under certain wind speed conditions revealed dual peaks, whereas the storm surge distribution maintained a uniform pattern, with the best joint distribution fitting the Gumbel Copula. (3) Considering a 100-year return period for individual variables, the bivariate return periods for wind speed-rainfall and wind speed-storm surge events were significantly reduced to 29 and 30 years, respectively, while the trivariate return period for the wind speed-rainfall-storm surge combination was further reduced to 17 years. Overall, the C-Vine Copula function effectively characterizes the complex nonlinear and asymmetric dependencies among the typhoon disaster chain "strong wind-rainstorm-storm surge", reducing high-dimensional parameter estimation complexity. This method provides new insights for constructing joint probability and return period models for multiple hazard factors and offers a scientific basis for disaster risk assessment and management strategies. Therefore, this enhances the accuracy of disaster prevention and mitigation efforts. Additionally, the application of the C-Vine Copula assists to deeply understand the mechanisms and development processes of natural disasters, providing new tools for on-site emergency response and decision-making.

Keywords