Atmospheric Measurement Techniques (Mar 2022)

Analytic characterization of random errors in spectral dual-polarized cloud radar observations

  • A. Myagkov,
  • D. Ori

DOI
https://doi.org/10.5194/amt-15-1333-2022
Journal volume & issue
Vol. 15
pp. 1333 – 1354

Abstract

Read online

This study presents the first-ever complete characterization of random errors in dual-polarimetric spectral observations of meteorological targets by cloud radars. The characterization is given by means of mathematical equations for joint probability density functions (PDFs) and error covariance matrices. The derived equations are checked for consistency using real radar measurements. One of the main conclusions of the study is that the convenient representation of spectral polarimetric measurements including differential reflectivity ZDR, correlation coefficient ρHV, and differential phase ΦDP is not suited for the proper characterization of the error covariance matrix. This is because the aforementioned quantities are complex, non-linear functions of the radar raw data, and thus their error covariance matrix is commonly derived using simplified linear relations and by neglecting the correlation of errors. This study formulates the spectral polarimetric measurements in terms of a different set of quantities that allows for a proper analytic treatment of their error covariance matrix. The results given in this study allow for utilization of spectral polarimetric measurements for advanced meteorological applications, among which are variational retrieval techniques, data assimilation, and sensitivity analysis.