Arabian Journal of Chemistry (Mar 2022)

Arylation of halogenated thiophene carboxylate via Suzuki–Miyaura reaction: Anti-bacterial study against clinically isolated extensively drug resistant Escherichia coli sequence type 405 and computational investigation

  • Aqsa Mujahid,
  • Nasir Rasool,
  • Muhammad Usman Qamar,
  • Muhammad Zubair,
  • Fatima Ahmad,
  • Ataf Ali Altaf,
  • Arusa Akhtar,
  • Syed Adnan Ali Shah,
  • Faleh Alqahtani,
  • Sary Alsanea,
  • Thamer H. Albekairi,
  • Muahammad Jawad Nasim,
  • Muhammad Fawad Rasool,
  • Imran Imran

Journal volume & issue
Vol. 15, no. 3
p. 103662

Abstract

Read online

In present study, Pd(0) catalysed Suzuki-Miyaura cross coupling reaction was used to synthesize 2,4-biarylphenyl-5-arylthiophene-2-carboxylate (7a–7f) and 2-aryl-4-chlorophenyl-5-arylthiophene-2-carboxylate derivatives (8a–8l) in moderate to good yields. While 2,4-dibromophenyl-5-bromothiophene-2-carboxylate (4) and 2-bromo-4-chlorophenyl-5-bromothiophene-2-carboxylate (5) were synthesized via Steglich esterification of 5-bromothiophene-2-carboxylic acid (1) with 2,4-dibromo phenol (2) and 2-bromo-4-chlorophenol (3) in the presence of N, N΄-dicyclohexylcarbodiimide (DCC) and 4-(dimethylamino)pyridine (DMAP). 1H and 13C NMR were used to confirm all of the compounds. To screen out the most active lead compounds, binding interactions of all synthesized compounds with MurD and MurE Escherichia coli proteins were evaluated theoretically via molecular docking studies indicating the good binding affinities. DFT calculations were performed out by using DFT-B3LYP/3-21g and structural and reactivity parameters were calculated. Compounds 5, 8b, 8e, 8h, and 8j have demonstrated potential reactivities and charge distributions that indicate their efficiency towards biological targets. These chemicals were tested in vitro for antibacterial activity against Gram-negative bacteria (Escherichia coli) at different concentrations based on theoretical results. The total results were quite close to the theoretical predictions and compound 8j was found to be having the greatest potential value, strongest binding affinities, and a promising antibacterial agent with MIC value of 50 mg/ml against Escherichia coli.

Keywords