IEEE Access (Jan 2021)

KNN-SC: Novel Spectral Clustering Algorithm Using k-Nearest Neighbors

  • Jeong-Hun Kim,
  • Jong-Hyeok Choi,
  • Young-Ho Park,
  • Carson Kai-Sang Leung,
  • Aziz Nasridinov

DOI
https://doi.org/10.1109/ACCESS.2021.3126854
Journal volume & issue
Vol. 9
pp. 152616 – 152627

Abstract

Read online

Spectral clustering is a well-known graph-theoretic clustering algorithm. Although spectral clustering has several desirable advantages (such as the capability of discovering non-convex clusters and applicability to any data type), it often leads to incorrect clustering results because of high sensitivity to noise points. In this study, we propose a robust spectral clustering algorithm known as KNN-SC that can discover exact clusters by decreasing the influence of noise points. To achieve this goal, we present a novel approach that filters out potential noise points by estimating the density difference between data points using $k$ -nearest neighbors. In addition, we introduce a novel method for generating a similarity graph in which various densities of data points are effectively represented by expanding the nearest neighbor graph. Experimental results on synthetic and real-world datasets demonstrate that KNN-SC achieves significant performance improvement over many state-of-the-art spectral clustering algorithms.

Keywords