iScience (Oct 2024)
Mechanism of local electric oxidation on two-dimensional MoS2 for resistive memory application
Abstract
Summary: The manipulation and mechanism of two-dimensional (2D) transition metal dichalcogenides (TMDs) by external electric field are significant to the photoelectric properties. Herein, the 2D MoS2 nanosheets were oxidized to form MoS2-MoO3 local heterojunctions by an electric field, applied in multistable memristors for the proposal of NanoQR code. A modified thermal oxidation model was derived to reveal the mechanism of local electric oxidation on 2D MoS2. From current-voltage curves, the barrier height of the MoS2 device showed an increase of 0.39 eV due to local oxidation after applying voltage for 480 s. Based on density-functional theory, the increase of barrier height was calculated as 0.38 eV between MoS2-MoS2 and MoS2-MoO3 supercells. The 2D MoS2-MoO3 local heterojunctions were further applied as multistable memory storage at the nanoscale. The findings suggest a novel strategy for controlling local electric oxidation on 2D TMDs to manipulate the properties for the application of photoelectric memory nanodevices.