Ecologies (Sep 2022)
Localized Placement of Breakwater Reefs Influences Oyster Populations and Their Resilience after Hurricane Harvey
Abstract
Populations of the eastern oyster (Crassostrea virginica) have been historically declining due to both natural and anthropogenic stressors. In response, oyster reefs have been created with many different approaches. This study utilized intertidal reefs constructed with oyster shells recycled from local restaurants to provide oyster settlement substrate, reef-associated faunal habitat, and a barrier to prevent marsh erosion. The objective of this study was to determine how oyster population characteristics changed over four years (2016–2019) on five different reefs within Sweetwater Lake, Galveston Bay, Texas, with a secondary objective to examine how oyster populations responded after Hurricane Harvey. Over the study period, five different reefs were sampled each summer by removing five bags per reef to determine oyster abundance and size demography. For the three years of the study (2017–2019), we also quantified oyster spat recruitment to the reefs. Oyster abundance and size (shell height) varied interactively by year and reef number, whereas oyster recruitment was significantly lower following Hurricane Harvey and then returned to pre-storm levels. Our results further highlight the importance of reef placement for breakwater-style reefs, as it appears the hydrodynamics within Sweetwater Lake influenced both oyster abundance and size among individual reefs. While the created reefs receive limited larval influx due to the narrow opening between Sweetwater Lake and Galveston Bay proper, this limited connectivity seemed to prevent mass mortality from the freshwater influx from Hurricane Harvey. Therefore, projects creating oyster reefs should consider local and regional landscape factors for the long-term success of oyster populations and robustness to natural disasters.
Keywords